Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Hum Neurosci ; 18: 1340374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487103

RESUMEN

Background: Balance and mobility impairments are prevalent post-stroke and a large number of survivors require walking assistance at 6 months post-stroke which diminishes their overall quality of life. Personalized interventions for gait and balance rehabilitation are crucial. Recent evidence indicates that stroke lesions in primary motor pathways, such as corticoreticular pathways (CRP) and corticospinal tract (CST), may lead to reliance on alternate motor pathways as compensation, but the current evidence lacks comprehensive knowledge about the underlying neural mechanisms. Methods: In this study, we investigate the functional connectivity (FC) changes within the motor network derived from an individualized cortical parcellation approach in 33 participants with chronic stroke compared to 17 healthy controls. The correlations between altered motor FC and gait deficits (i.e., walking speed and walking balance) were then estimated in the stroke population to understand the compensation mechanism of the motor network in motor function rehabilitation post-stroke. Results: Our results demonstrated significant FC increases between ipsilesional medial supplementary motor area (SMA) and premotor in stroke compared to healthy controls. Furthermore, we also revealed a negative correlation between ipsilesional SMA-premotor FC and self-selected walking speed, as well as the Functional Gait Assessment (FGA) scores. Conclusion: The increased FC between the ipsilesional SMA and premotor regions could be a compensatory mechanism within the motor network following a stroke when the individual can presumably no longer rely on the more precise CST modulation of movements to produce a healthy walking pattern. These findings enhance our understanding of individualized motor network FC changes and their connection to gait and walking balance impairments post-stroke, improving stroke rehabilitation interventions.

2.
Nat Prod Res ; : 1-14, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198584

RESUMEN

The phytochemical investigation of Psidium guajava leaves led to the isolation of total nineteen compounds which belongs to meroterpenoids, flavonoid, phenolics, and triterpenoids. The compounds were isolated using extensive chromatography techniques and identified as psiguanol (4), as new compound along with guajadial (1), psidial A (2), ß-caryophyllene (3), quercetin (5), avicularin (6), guaijaverin (7), hyperin (8), rutin (9), ursolic acid (10), corosolic acid (11), asiatic acid (12), ß-sitosterol (13), ß-sitosterol-D-glucoside (14), ellagic acid (15), 3,3',4'-trimethylellagic acid 4-O-glucoside (16), protocatechuic acid (17), gallic acid (18), and tricosanoic acid (19) as known molecules. The compound 16 was isolated for the first time from this plant. The isolated compounds were evaluated for vasorelaxation activity in rat aorta cells and it was observed that compound 4 exhibited the most potent vasorelaxation response in the ex-vivo model in isolated rat aorta cells. Mechanistically, the vasorelaxation activity of 4 was mediated through cGMP-dependent BKCa channel opening.

3.
Gait Posture ; 107: 246-252, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923642

RESUMEN

BACKGROUND: Ankle dorsiflexion function during swing phase contributes to foot clearance and plays an important role in walking ability post-stroke. Commonly used biomechanical measures such as foot clearance and ankle joint excursion have limited ability to accurately evaluate impaired dorsiflexor function. RESEARCH QUESTION: Can ankle angular velocity and acceleration be used as reliable measurers of dorsiflexion function in post-stroke gait? METHODS: Using linear regression and Pearson's correlation we retrospectively compared peak ankle angular velocity (AωP), peak ankle angular acceleration (AαP), peak dorsiflexion angle (DFAP) and peak foot clearance (FCLP) as direct measures for swing phase dorsiflexor function in 60 chronic stroke survivors. Intraclass correlation coefficient (ICC) analysis was used for test-retest reliability of AωP and AαP. RESULTS: Linear regression models revealed that AωP, AαP, DFAP, FCLP had a significant relationship (p < 0.05) with impaired dorsiflexion function. AαP and DFAP accounted for the most variance of dorsiflexion function. AωP, AαP, FCLP, correlated significantly with all clinical outcome measures of walking ability. DFAP had a positive correlation only with FMA-LE. Post-hoc William's t-tests, used to compare the magnitude of difference between two non-independent correlations, revealed that the correlation between all clinical measures and DFAP were significantly weaker than with AωP and AαP. Correlation between FMA-LE and FCLP was weaker than with AωP and AαP. Excellent test-retest reliability for both AωP (ICC = 0.968) and AαP (ICC = 0.947) was observed. SIGNIFICANCE: These results suggest that DFAP may only be associated with dorsiflexion function during non-task specific isolated movements, but not during walking. FCLP is associated with dorsiflexion function and walking ability measures but not as strongly as AωP and AαP possibly because FCLP is influenced by contribution from hip and knee joint movements. Therefore, AωP and AαP are reliable measures and represent dorsiflexion function more accurately than DFAP, and FCLP.


Asunto(s)
Tobillo , Accidente Cerebrovascular , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Caminata , Accidente Cerebrovascular/complicaciones , Marcha , Articulación del Tobillo , Fenómenos Biomecánicos
4.
Asian Pac J Cancer Prev ; 24(11): 3697-3704, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019227

RESUMEN

OBJECTIVE: Dosimetric sparing of critical swallowing structures like constrictor muscles and larynx can lead to improved functional outcomes in head and neck cancer patients treated by chemoradiation. METHODS: A total of 50 Patients with newly diagnosed, biopsy proven AJCC stage II-IV head and neck squamous cell cancers (HNSCC) were prospectively studied. 25 patients were randomized in each arm of Dysphagia-optimized Intensity Modulated Radiotherapy (Do-IMRT) arm and Standard Intensity Modulated Radiotherapy (SIMRT) arm. Additional dose constraints were applied to the dysphagia/aspiration at risk structures (DARS) in Do-IMRT arm. The impact of using Do-IMRT was assessed by the difference in mean scores of MD Anderson Dysphagia Inventory (MDADI), University of Washington-Quality of Life (UW-QOL), and 100 ml Water Swallow Test (WST). RESULTS: Patients in both arms showed significant (P <0.01 or P < 0.001) improvement in MDADI (global and composite), UW-QOL and Water Swallow Test scores. However, the improvements were found significantly higher in Do-IMRT as compared to S-IMRT. Significant improvements i.e. mean change from baseline to 12 months (P <0.05 or P <0.01 or P <0.001) were 19. 2, 8.6, 14.3, 7.4, 18.6 and 22.0%  higher respectively in Do-IMRT as compared to S-IMRT  in MDADI global and composite scores, UW-QOL swallowing scores, and 100 ml Water Swallow  (swallowing volume, swallowing capacity and swallowing speed)  test scores. CONCLUSION: The Do-IMRT improves swallowing functions compared to S-IMRT in HNSCC patients treated with radical chemoradiation.


Asunto(s)
Trastornos de Deglución , Neoplasias de Cabeza y Cuello , Radioterapia de Intensidad Modulada , Humanos , Trastornos de Deglución/etiología , Carcinoma de Células Escamosas de Cabeza y Cuello , Calidad de Vida , Neoplasias de Cabeza y Cuello/radioterapia , Agua
5.
Asian Pac J Cancer Prev ; 24(10): 3441-3445, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37898849

RESUMEN

BACKGROUND: In cervical cancer treatment, overall treatment time (OTT) is an important prognostic factor. This study compares the clinical outcomes when High-Dose-Rate Intracavitary-Brachytherapy(HDR-ICRT) is interdigitated with external beam radiotherapy(EBRT) versus sequential HDR-ICRT after EBRT in the treatment of locally advanced carcinoma cervix. METHODS: Histologically confirmed carcinoma cervix patients [FIGO Stage IIB-IVA (except IIIC-2)] were included and randomized into two groups. The study group received EBRT 50Gy in 25 fractions with interdigitated HDR-ICRT 7Gy per fraction weekly for three fractions starting after completion of 3 weeks of EBRT or as soon as cervical os became negotiable thereafter. Patients in the control group received EBRT 50Gy in 25 fractions with sequential HDR-ICRT 7Gy per fraction weekly for three fractions starting one week after completion of EBRT. All patients were regularly followed up during and after radiotherapy for local toxicity and disease control. RESULTS: This study enrolled 102 patients; 51 in each arm. Median OTT in study and control arm were 46 and 60 days, respectively. Median follow-up duration was 24 months (two years). Loco-regional control after two years of follow-up was 84.31 % and 72.54% of patients in study arm control arm respectively (p-value 0.148). Two (3.92%) patients from study arm and eight (15.68%) from control arm had residual disease. Two patients in study arm and one from control arm had local recurrence. Two patients from study arm three patients from control arm developed distant metastases. RTOG mucosal grade III acute mucosal toxicity in either arm. Cervical-os negotiability was limiting factor for interdigitated HDR-ICRT. CONCLUSIONS: Interdigitated HDR-ICRT with EBRT may give local control with manageable toxicities as compared to sequential HDR-ICRT, with the advantage of significant reduction in OTT.
.


Asunto(s)
Braquiterapia , Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Cuello del Útero/patología , Carcinoma de Células Escamosas/patología , Dosificación Radioterapéutica , Neoplasias del Cuello Uterino/radioterapia , Neoplasias del Cuello Uterino/patología
6.
Mol Biol Rep ; 50(9): 7347-7356, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37439897

RESUMEN

BACKGROUND: Trypanosoma evansi is a protozoan parasite that can infect a wide range of animals and is widespread around the world. In this study, we analyzed four fatal cases of T. evansi infection using clinical, parasitological, and molecular approaches. We also explored the genetic diversity, demographic history, and population-genetic structure of T. evansi using available Rode Trypanozoon antigenic type (RoTat) 1.2 gene sequences. METHODS AND RESULTS: Clinical findings of infected animals revealed high fever, anemia, weakness, and anorexia. The animals were treated with diminazene aceturate, which was moderately effective, and hematobiochemical parameters showed changes in hemoglobin and glucose levels. The molecular and genetic diversity of T. evansi was analyzed using the RoTat 1.2 VSG gene. Phylogenetic and haplotype analysis revealed two distinct clusters of T. evansi circulating in India. The genetic diversity indices, neutrality tests, gene flow, and genetic differentiation outcomes confirmed the genetic diversity of the T. evansi population, with a lack of uniformity. The identification of two distinct clusters, exhibiting differential demographic histories and evolutionary forces, implies that the clusters may have undergone independent evolutionary trajectories or experienced different environmental pressures. CONCLUSION: The present findings underlined the need of an early and precise diagnosis in order to treat and control T. evansi infections, and the RoTat 1.2 VSG gene is an important genetic marker for understanding the genetic diversity and evolutionary history of T. evansi. This knowledge can be used to create tailored strategies to control and manage the infection in an endemic region.


Asunto(s)
Trypanosoma , Tripanosomiasis , Animales , Caballos , Perros , Tripanosomiasis/veterinaria , Tripanosomiasis/epidemiología , Tripanosomiasis/parasitología , Antígenos de Protozoos/genética , Filogenia , Trypanosoma/genética , Camelus/parasitología , Variación Genética/genética
7.
Stroke ; 54(9): 2438-2441, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37465999

RESUMEN

BACKGROUND: Integrity of the corticospinal tract (CST) is an important biomarker for upper limb motor function following stroke. However, when structurally compromised, other tracts may become relevant for compensation or recovery of function. METHODS: We used the ENIGMA Stroke Recovery data set, a multicenter, retrospective, and cross-sectional collection of patients with upper limb impairment during the chronic phase of stroke to test the relevance of tracts in individuals with less and more severe (laterality index of CST fractional anisotropy ≥0.25) CST damage in an observational study design. White matter integrity was quantified using fractional anisotropy for the CST, the superior longitudinal fascicle, and the callosal fibers interconnecting the primary motor cortices between hemispheres. Optic radiations served as a control tract as they have no a priori relevance for the motor system. Pearson correlation was used for testing correlation with upper limb motor function (Fugl-Meyer upper extremity). RESULTS: From 1235 available data sets, 166 were selected (by imaging, Fugl-Meyer upper extremity, covariates, stroke location, and stage) for analyses. Only individuals with severe CST damage showed a positive association of fractional anisotropy in both callosal fibers interconnecting the primary motor cortices (r[21]=0.49; P=0.025) and superior longitudinal fascicle (r[21]=0.51; P=0.018) with Fugl-Meyer upper extremity. CONCLUSIONS: Our data support the notion that individuals with more severe damage of the CST depend on residual pathways for achieving better upper limb outcome than those with less affected CST.


Asunto(s)
Accidente Cerebrovascular , Sustancia Blanca , Humanos , Estudios Transversales , Estudios Retrospectivos , Sustancia Blanca/diagnóstico por imagen , Extremidad Superior , Tractos Piramidales/diagnóstico por imagen , Recuperación de la Función
8.
bioRxiv ; 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37162884

RESUMEN

Ankle dorsiflexion function during swing phase of the gait cycle contributes to foot clearance and plays an important role in walking ability post-stroke. Commonly used biomechanical measures such as foot clearance and ankle joint excursion have limited ability to accurately evaluate dorsiflexor function in stroke gait. We retrospectively evaluated ankle angular velocity and ankle angular acceleration as direct measures for swing phase dorsiflexor function in post-stroke gait of 61 chronic stroke survivors. Our linear regression models revealed that peak ankle angular velocity (AAV P ), peak ankle angular acceleration (AAA P ), peak dorsiflexion angle (DFA P ) and peak foot clearance (FCL P ) during swing had a significant relationship (p < 0.05) with impaired dorsiflexion function. AAA P and DFA P accounted for the most variance of dorsiflexion function. Additionally, AAV P , AAA P , FCL P during swing, correlated significantly with all clinical outcome measures of walking ability. DFA P during swing had a positive correlation only with FMA-LE. Post-hoc William's t -tests, used to compare the magnitude of difference between two non-independent correlations, revealed that the correlation between all clinical measures and DFA P were significantly weaker than with AAV P and AAA P . We also found that correlation between FMA-LE and FCL P was weaker than with AAV P and AAA P . We found an excellent test-retest reliability for both AAV P (ICC = 0.968) and AAA P (ICC = 0.947). These results suggest that DFA P may only be associated with non-task specific isolated dorsiflexion movement, but not during walking. FCL P is associated with dorsiflexion function and walking ability measures but not as strongly as AAV P and AAA P possibly because FCL P is influenced by contribution from hip and knee joint movements during walking. Therefore, we believe that AAV P and AAA P both can be used as reliable measures of impaired dorsiflexion function in post-stroke gait.

9.
Cells ; 12(9)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174677

RESUMEN

Glioblastoma multiforme (GBM) is a major aggressive primary brain tumor with dismal survival outcome and few therapeutic options. Although Temozolomide (TMZ) is a part of the standard therapy, over time, it can cause DNA damage leading to deleterious effects, necessitating the discovery of drugs with minimal side effects. To this end, we investigated the effect of cinnamaldehyde (CA), a highly purified, single ingredient from cinnamon, on the GBM cell lines U87 and U251 and the neuroglioma cell line H4. On observing similar impact on the viability in all the three cell lines, detailed studies were conducted with CA and its isomer/analog, trans-CA (TCA), and methoxy-CA (MCA) on U87 cells. The compounds exhibited equal potency when assessed at the cellular level in inhibiting U87 cells as well as at the molecular level, resulting in an increase in reactive oxygen species (ROS) and an increase in the apoptotic and multicaspase cell populations. To further characterize the key entities, protein profiling was performed with CA. The studies revealed differential regulation of entities that could be key to glioblastoma cell circuits such as downregulation of pyruvate kinase-PKM2, the key enzyme of the glycolytic pathway that is central to the Warburg effect. This allows for monitoring the levels of PKM2 after therapy using recently developed noninvasive technology employing PET [18F] DASA-23. Additionally, the observation of downregulation of phosphomevalonate kinase is significant as the brain tumor initiating cells (BTIC) are maintained by the metabolism occurring via the mevalonate pathway. Results from the current study, if translated in vivo, could provide additional efficacious treatment options for glioblastoma with minimal side effects.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Apoptosis , Línea Celular Tumoral
10.
Physiol Rep ; 11(7): e15659, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020411

RESUMEN

Knowledge regarding the neural origins of distinct upper extremity impairments may guide the choice of interventions to target neural structures responsible for specific impairments. This cross-sectional pilot study investigated whether different brain networks explain distinct aspects of hand grip performance in stroke survivors. In 22 chronic stroke survivors, hand grip performance was characterized as grip strength, reaction, relaxation times, and control of grip force magnitude and direction. In addition, their brain structural connectomes were constructed from diffusion tensor MRI. Prominent networks were identified based on a two-step factor analysis using the number of streamlines among brain regions relevant to sensorimotor function. We used regression models to estimate the predictive value of sensorimotor network connectivity for hand grip performance measures while controlling for stroke lesion volumes. Each hand grip performance measure correlated with the connectivity of distinct brain sensorimotor networks. These results suggest that different brain networks may be responsible for different aspects of hand grip performance, which leads to varying clinical presentations of upper extremity impairment following stroke. Understanding the brain network correlates for different hand grip performances may facilitate the development of personalized rehabilitation interventions to directly target the responsible brain network for specific impairments in individual patients, thus improving outcomes.


Asunto(s)
Fuerza de la Mano , Accidente Cerebrovascular , Humanos , Estudios Transversales , Proyectos Piloto , Accidente Cerebrovascular/complicaciones , Encéfalo , Mano
11.
Exp Brain Res ; 241(2): 615-627, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36639543

RESUMEN

Evidence supporting the benefits of locomotor training (LT) to improve walking ability following stroke are inconclusive and could likely be improved with a better understanding of the effects of individual parameters i.e., body weight support (BWS), speed, and therapist assistance and their interactions with walking ability and specific impairments. We evaluated changes in muscle activity of thirty-seven individuals with chronic stroke (> 6 months), in response to a single session of LT at their self-selected or fastest-comfortable speed (FS) with three levels of BWS (0%, 15%, and 30%), and at FS with 30% BWS and seven different combinations of therapist assistance at the paretic foot, non-paretic foot, and trunk. Altered Muscle Activation Pattern (AMAP), a previously developed tool in our lab was used to evaluate the effects of LT parameter variation on eight lower-extremity muscle patterns in individuals with stroke. Repeated-measures mixed-model ANOVA was used to determine the effects of speed, BWS, and their interaction on AMAP scores. The Wilcoxon-signed rank test was used to determine the effects of therapist-assisted conditions on AMAP scores. Increased BWS mostly improved lower-extremity muscle activity patterns, but increased speed resulted in worse plantar flexor activity. Abnormal early plantar flexor activity during stance decreased with assistance at trunk and both feet, exaggerated plantar flexor activity during late swing decreased with assistance to the non-paretic foot or trunk, and diminished gluteus medius activity during stance increased with assistance to paretic foot and/or trunk. Therefore, different sets of training parameters have different immediate effects on activation patterns of each muscle and gait subphases.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Caminata/fisiología , Marcha/fisiología , Accidente Cerebrovascular/complicaciones , Rehabilitación de Accidente Cerebrovascular/métodos , Músculo Esquelético/fisiología , Peso Corporal
12.
Front Neurol ; 13: 968385, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388195

RESUMEN

Background: Mass flexion-extension co-excitation patterns during walking are often seen as a consequence of stroke, but there is limited understanding of the specific contributions of different descending motor pathways toward their control. The corticospinal tract is a major descending motor pathway influencing the production of normal sequential muscle coactivation patterns for skilled movements. However, control of walking is also influenced by non-corticospinal pathways such as the corticoreticulospinal pathway that possibly contribute toward mass flexion-extension co-excitation patterns during walking. The current study sought to investigate the associations between damage to corticospinal (CST) and corticoreticular (CRP) motor pathways following stroke and the presence of mass flexion-extension patterns during walking as evaluated using module analysis. Methods: Seventeen healthy controls and 44 stroke survivors were included in the study. We used non-negative matrix factorization for module analysis of paretic leg electromyographic activity. We typically have observed four modules during walking in healthy individuals. Stroke survivors often have less independently timed modules, for example two-modules presented as mass flexion-extension pattern. We used diffusion tensor imaging-based analysis where streamlines connecting regions of interest between the cortex and brainstem were computed to evaluate CST and CRP integrity. We also used a coarse classification tree analysis to evaluate the relative CST and CRP contribution toward module control. Results: Interhemispheric CST asymmetry was associated with worse lower extremity Fugl-Meyer score (p = 0.023), propulsion symmetry (p = 0.016), and fewer modules (p = 0.028). Interhemispheric CRP asymmetry was associated with worse lower extremity Fugl-Meyer score (p = 0.009), Dynamic gait index (p = 0.035), Six-minute walk test (p = 0.020), Berg balance scale (p = 0.048), self-selected walking speed (p = 0.041), and propulsion symmetry (p = 0.001). The classification tree model reveled that substantial ipsilesional CRP or CST damage leads to a two-module pattern and poor walking ability with a trend toward increased compensatory contralesional CRP based control. Conclusion: Both CST and CRP are involved with control of modules during walking and damage to both may lead to greater reliance on the contralesional CRP, which may contribute to a two-module pattern and be associated with worse walking performance.

13.
J Biomed Phys Eng ; 12(4): 339-348, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36059288

RESUMEN

Background: Conventional optimization techniques are based on the planning approach in which positions and weights are varied to generate the desired dose distribution. Inverse planning simulated annealing (IPSA) is an advanced optimization method developed to automatically determine a suitable combination of positions to design an acceptable plan. Objective: In this study, three optimization techniques namely IPSA, graphical optimization (GROPT), and geometrical optimization (GOPT) methods are compared in high-dose-rate interstitial brachytherapy of cervical carcinoma. Material and Methods: In this retrospective study, twenty computed tomography (CT) data sets of 10 cervical cancer patients treated with Martinez Universal Perineal Interstitial Template-based interstitial brachytherapy were studied. The treatment plans generated were optimized using the IPSA, and GOPT methods. The prescribed dose was 24 Gy in 4 fractions. Plans produced using IPSA, GrOPT, and GOPT techniques were analyzed for comparison of dosimetric parameters, including target coverage, homogeneity, conformity, and organs at risk (OAR) doses. Results: V100 values for IPSA, GrOPT and GOPT plans were 95.81±2.33%, 93.12±2.76% and 88.90±4.95%, respectively. The mean D90 values for the IPSA, GrOPT, and GOPT plans were 6.45±0.15 Gy, 6.12±0.21 Gy, and 5.85±0.57 Gy, respectively. Significantly lower doses of OAR were in the IPSA plans that were more homogeneous (HI=0.66). Conformity was comparatively higher in IPSA-based plans (CI=0.75). Conclusion: IPSA plans were superior and resulted in better target coverage, homogeneity, conformity, and minimal OAR doses.

14.
Drug Dev Ind Pharm ; 47(9): 1512-1522, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34781796

RESUMEN

The present study is aimed to formulate baicalein-loaded mixed micelles to enhance the solubility and oral bioavailability. Baicalein encapsulated D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and pluronic F127 (F127) combined micelles were prepared and investigated for anticancer effect. The optimized formulation contains 25.04 ± 0.24 nm mean particle size of micelles with a zeta potential value of -4.01 ± 0.5 mV. The calculated entrapment efficiency percentage of baicalein within the micellar structure was 83.43 ± 0.13% and the in vitro release of baicalein from micelles displayed a sustained release profile at pH 7.4. The incorporation of baicalein within micelles core was also confirmed by FTIR analysis of formulation, which hardly represents the characteristic peak of baicalein, indicating successful entrapment of the drug. In vitro cell culture experiments revealed baicalein-loaded micelles significantly enhanced cellular uptake and cytotoxicity against MDAMB-231 cell lines in comparison to free baicalein. Additionally, as compared to free baicalein, baicalein micelles demonstrated greater apoptosis-inducing potential while the results of the cell cycle study exhibited arrest of cells at the G0/G1 phase of the cell cycle. Results of ROS (reactive oxygen species) and MMP (mitochondrial membrane potential) assay revealed the ROS-dependent mitochondrial-mediated apoptosis pathway utilized by developed formulation to inhibit cell proliferation. Thus, the developed nano micelles can serve as a potent carrier system for baicalein against breast cancer.


Asunto(s)
Neoplasias de la Mama , Micelas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Portadores de Fármacos , Femenino , Flavanonas , Humanos , Tamaño de la Partícula , Polietilenglicoles/farmacología , Polímeros , Especies Reactivas de Oxígeno , Vitamina E
15.
J Biomech ; 114: 110113, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33338757

RESUMEN

Turning is an important activity of daily living and often compromised post-stroke. The fall rate for individuals post-stroke while turning is nearly four times as high compared to healthy adults, with most falls resulting in injury. Thus, there is a need for evidence-based rehabilitation targets to improve turning performance for individuals post-stroke. To produce well-coordinated movements, muscles can be organized into muscle modules (i.e., groups of co-excited muscles). Post-stroke these modules can be merged, leading to impaired muscle coordination and walking performance. However, the relationship between impaired coordination and turning performance is not well understood. Thus, the purpose of this study was to analyze the influence of impaired muscle coordination (i.e., merged modules) on turning performance (i.e., time and number of steps required to complete a turn, and smoothness and balance control during the turn). Individuals post-stroke and healthy controls performed three tasks including overground straight-line walking, a 90-degree turn, and a 180-degree turn. The number of muscle modules during straight-line walking were determined using non-negative matrix factorization. During 180-degree turning, those with two modules took longer to turn, used more steps and had less smooth movement. Those with reduced module complexity exhibited diminished balance control during both 90-degree and 180-degree turning. These results suggest obtaining independent modules should be an important aim in locomotor therapies aimed at improving turning performance. In addition, the time it takes to complete a 180-degree turn may provide useful clinical insight into impaired muscle coordination post-stroke.


Asunto(s)
Accidente Cerebrovascular , Caminata , Accidentes por Caídas , Adulto , Humanos , Músculo Esquelético
16.
Ann N Y Acad Sci ; 1491(1): 42-59, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33222245

RESUMEN

The World Health Organization (WHO) issued guidelines for the regulatory evaluation of biosimilars in 2009 and has provided considerable effort toward helping member states implement the evaluation principles in the guidelines into their regulatory practices. Despite this effort, a recent WHO survey (conducted in 2019-2020) has revealed four main remaining challenges: unavailable/insufficient reference products in the country; lack of resources; problems with the quality of some biosimilars (and even more with noninnovator products); and difficulties with the practice of interchangeability and naming of biosimilars. The following have been identified as opportunities/solutions for regulatory authorities to deal with the existing challenges: (1) exchange of information on products with other regulatory authorities and accepting foreign licensed and sourced reference products, hence avoiding conducting unnecessary (duplicate) bridging studies; (2) use of a "reliance" concept and/or joint review for the assessment and approval of biosimilars; (3) review and reassessment of the products already approved before the establishment of a regulatory framework for biosimilar approval; and (4) setting appropriate regulatory oversight for good pharmacovigilance, which is essential for the identification of problems with products and establishing the safety and efficacy of interchangeability of biosimilars.


Asunto(s)
Biosimilares Farmacéuticos/normas , Aprobación de Drogas , Farmacovigilancia , Guías como Asunto , Intercambio de Información en Salud , Humanos , Encuestas y Cuestionarios , Organización Mundial de la Salud
17.
Front Hum Neurosci ; 14: 578127, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328932

RESUMEN

Background: In this pilot study, we examined the effects of ipsilesional high-frequency rTMS (iHF-rTMS) and contralesional low-frequency rTMS (cLF-rTMS) applied via a double-cone coil on neurophysiological and gait variables in patients with chronic stroke. Objective/Hypothesis: To determine the group and individual level effects of two types of stimulation to better individualize neuromodulation for rehabilitation. Methods: Using a randomized, within-subject, double-blind, sham-controlled trial with 14 chronic stroke participants iHF-rTMS and cLF-rTMS were applied via a double-cone coil to the tibialis anterior cortical representation. Neurophysiological and gait variables were compared pre-post rTMS. Results: A small effect of cLF-rTMS indicated increased MEP amplitudes (Cohen's D; cLF-rTMS, d = -0.30). Group-level analysis via RMANOVA showed no significant group effects of stimulation (P > 0.099). However, secondary analyses of individual data showed a high degree of response variability to rTMS. Individual percent changes in resting motor threshold and normalized MEP latency correlated with changes in gait propulsive forces and walking speed (iHF-rTMS, nLAT:Pp, R = 0.632 P = 0.015; cLF-rTMS, rMT:SSWS, R = -0.557, P = 0.039; rMT:Pp, R = 0.718, P = 0.004). Conclusions: Changes in propulsive forces and walking speed were seen in some individuals that showed neurophysiological changes in response to rTMS. The neurological consequences of stroke are heterogeneous making a "one type fits all" approach to neuromodulation for rehabilitation unlikely. This pilot study suggests that an individual's unique response to rTMS should be considered before the application/selection of neuromodulatory therapies. Before neuromodulatory therapies can be incorporated into standard clinical practice, additional work is needed to identify biomarkers of response and how best to prescribe neuromodulation for rehabilitation for post-stroke gait.

18.
Sci Rep ; 10(1): 17831, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082380

RESUMEN

Having an abundance of motor solutions during movement may be advantageous for the health of musculoskeletal tissues, given greater load distribution between tissues. The aim of the present study was to understand whether motor abundance differs between people with and without low back pain (LBP) during a low-load lifting task. Motion capture with electromyography (EMG) assessment of 15 muscles was performed on 48 participants [healthy control (con) = 16, remission LBP (rLBP) = 16, current LBP (cLBP) = 16], during lifting. Non-negative matrix factorization and uncontrolled manifold analysis were performed to decompose inter-repetition variability in the temporal activity of muscle modes into goal equivalent (GEV) and non-goal equivalent (NGEV) variabilities in the control of the pelvis and trunk linear displacements. Motor abundance occurs when the ratio of GEV to NGEV exceeds zero. There were significant group differences in the temporal activity of muscle modes, such that both cLBP and rLBP individuals demonstrated greater activity of muscle modes that reflected lumbopelvic coactivation during the lifting phase compared to controls. For motor abundance, there were no significant differences between groups. Individuals with LBP, including those in remission, had similar overall motor abundance, but use different activation profiles of muscle modes than asymptomatic people during lifting.


Asunto(s)
Elevación , Dolor de la Región Lumbar/fisiopatología , Análisis y Desempeño de Tareas , Adulto , Estudios de Casos y Controles , Estudios Transversales , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Pelvis/fisiopatología , Columna Vertebral/fisiopatología , Torso/fisiopatología , Adulto Joven
19.
J Neuroeng Rehabil ; 16(1): 21, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704483

RESUMEN

BACKGROUND: Stroke survivors often have lower extremity sensorimotor impairments, resulting in an inability to sufficiently recruit muscle activity at appropriate times in a gait cycle. Currently there is a lack of a standardized method that allows comparison of muscle activation in hemiparetic gait post-stroke to a normative profile. METHODS: We developed a new tool to quantify altered muscle activation patterns (AMAP). AMAP accounts for spatiotemporal asymmetries in stroke gait by evaluating the deviations of muscle activation specific to each gait sub-phase. It also recognizes the characteristic variability within the healthy population. The inter-individual variability of normal electromyography (EMG) patterns within some sub-phases of the gait cycle is larger compared to others, therefore AMAP penalizes more for deviations in a gait sub-phase with a constant profile (absolute active or inactive) vs variable profile. EMG data were collected during treadmill walking, from eight leg muscles of 34 stroke survivors at self-selected speeds and 20 healthy controls at four different speeds. Stroke survivors' AMAP scores, for timing and amplitude variations, were computed in comparison to healthy controls walking at speeds matched to the stroke survivors' self-selected speeds. RESULTS: Altered EMG patterns in the stroke population quantified using AMAP agree with the previously reported EMG alterations in stroke gait that were identified using qualitative methods. We defined scores ranging between ±2.57 as "normal". Only 9% of healthy controls were outside "normal" window for timing and amplitude. Percentages of stroke subjects outside the "normal" window for each muscle were, Soleus = 79%; 73%, Medial Gastrocnemius = 62%; 79%, Tibialis Anterior = 62%; 59%, and Gluteus Medius = 48%; 51% for amplitude and timing component respectively, alterations were relatively smaller for the other four muscles. Paretic-propulsion was negatively correlated to AMAP scores for the timing component of Soleus. Stroke survivors' self-selected walking speed was negatively correlated with AMAP scores for amplitude and timing of Soleus but only amplitude of Medial gastrocnemius (p < 0.05). CONCLUSIONS: Our results validate the ability of AMAP to identify alterations in the EMG patterns within the stroke population and its potential to be used to identify the gait phases that may require more attention when developing an optimal gait training paradigm. TRIAL REGISTRATION: ClinicalTrials.gov NCT00712179 , Registered July 3rd 2008.


Asunto(s)
Trastornos Neurológicos de la Marcha/fisiopatología , Músculo Esquelético/fisiopatología , Paresia/fisiopatología , Adulto , Anciano , Electromiografía , Femenino , Marcha , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia , Accidente Cerebrovascular/fisiopatología , Caminata , Velocidad al Caminar
20.
J Cancer Res Ther ; 15(6): 1365-1369, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31898674

RESUMEN

AIM: This study intended to compare the dosimetric parameters using different definitions of prescription point A in high dose rate (HDR) brachytherapy of cervical cancer patients. BACKGROUND: Manchester point A has been widely used for prescribing dose in brachytherapy. However, due to certain limitations of this point, a new definition of point A has been recommended by the American Brachytherapy Society (ABS). MATERIALS AND METHODS: We retrospectively investigated 55 computed tomography-based plans of 20 cervical cancer patients treated with Ir-192-based intracavitary HDR brachytherapy. The dose of 7 Gy in 3 fractions each was prescribed to point A using revised Manchester definition of point A (AMAN) and ABS guideline definition (AABS). The effect of both definitions on various parameters including dose to point A and 90% of tumor volume (D90), dose received by 2cc volume of bladder, rectum and small bowel and treatment volume receiving 100% of prescription dose (V100) was analyzed. RESULTS: Mean percentage difference of point AMAN dose and AABS dose with respect to prescription dose was 1.25% ± 1.43% and 1.21% ± 1.01%, respectively. Mean V100 was 80.4 ± 20.45cc and 88.47 ± 16.78cc for AMAN and AABS plans, respectively, while mean percentage difference between prescribed dose and D90 was found to be -37.90% ± 25.06% and -30.47% ± 25.50% respectively for both the definitions. CONCLUSION: Doses to both Manchester point A and ABS point A may be recorded during the transition period. However, ABS point A can be preferred over the Manchester point A as it conforms better with the desired dosimetric outcome and is found to be more static.


Asunto(s)
Braquiterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias del Cuello Uterino/radioterapia , Braquiterapia/efectos adversos , Braquiterapia/métodos , Femenino , Humanos , Radiometría/métodos , Radioterapia Guiada por Imagen , Tomografía Computarizada por Rayos X , Neoplasias del Cuello Uterino/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...